195251, St. Petersburg,
Polytechnicheskaya, 29, Scientific-Research complex, room В.3.17.
+7 (921) 971-7617 (10 - 18 )
ntv-nauka@spbstu.ru

Смирнов С. И., Смирнов Е.М., Смирновский А. А.

Влияние теплопереноса в торцевых стенках на турбулентную конвекцию ртути во вращающемся цилиндре.

 «»

Представлены результаты прямого численного моделирования турбулентной свободной конвекции ртути (число Прандтля Pr = 0,025) в подогреваемой снизу вращающейся цилиндрической емкости с высотой, равной диаметру. Изучено влияние вращения емкости и теплопереноса в горизонтальных твердых стенках на структуру конвекции и интегральную теплоотдачу. Эффективное число Рэлея Ra ≈ 1 000 000. Уравнения Навье – Стокса в приближении Буссинеска решались по методу дробных шагов. Проанализированы мгновенные и осредненные поля скорости и температуры, спектральный состав пульсаций, а также данные по интегральной теплоотдаче. Проведено сравнение результатов расчетов по коду внутреннего пользования SINF/Flag-S с экспериментальными данными и с результатами, полученными с использованием коммерческого программного пакета ANSYS Fluent 15.0.

: 948 : 0

Пожилов А. А., Зайцев Д.К., Смирнов Е.М., Смирновский А. А.

Численное моделирование тепломассопереноса в трехмерной модели испарителя контурной тепловой трубы

 «»

Приводятся результаты имитационного численного моделирования трехмерного течения и сопряженного тепломассопереноса в модели испарителя контурной тепловой трубы спутника TacSat-4. Математическая модель основана на общих уравнениях баланса массы, импульса и энергии в составных системах, включающих занятые паром или жидкостью проточные части, а также твердотельные и пористые элементы, с испарением рабочей жидкости на границе между пористой структурой и паровой областью. Установлено, что процессы испарения теплоносителя наиболее интенсивно идут в углах паровых канавок вблизи корпуса испарителя. Показано, что отводящие пар аксиальные канавки испарителя работают в существенно разных условиях, в результате расходы пара отличаются в несколько раз. Существенное утолщение стенок корпуса испарителя лишь незначительно снижает степень неравномерности в распределении расхода теплоносителя по паровым канавкам.

Сcылка при цитировании: Пожилов А.А., Зайцев Д.К., Смирнов Е.М., Смирновский А. А. Численное моделирование тепломассопереноса в трехмерной модели испарителя контурной тепловой трубы // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2017. Т. 10. № 3. С. 52–63. DOI: 10.18721/JPM.10305

: 738 : 0

Овчинников С.Ю., Ларионов Н. В., Смирновский А. А., Шмидт А.А.

Образование квантовых вихрей при ионизации атома импульсом электромагнитного поля

 «»

Проведено численное и аналитическое исследование пространственно-временной эволюции квантовой системы, образованной в результате взаимодействия электромагнитного поля с водородоподобным атомом в двумерном приближении. Характерной особенностью полученного решения является наличие особых точек (квантовых вихрей), анализ которых проведен путем введения плотности вероятности и плотности потока вероятности. Образующиеся в процессе ионизации вихри могут распространяться на макроскопические расстояния и проявляться в виде запрещенных областей в спектре волновых чисел. Для численного моделирования такой задачи используется специальное преобразование переменных – метод расширяющегося пространства. Проведен численный анализ зависимости количества квантовых вихрей и их положений от параметров электромагнитного импульса. Численное решение сравнивается с аналитическим, полученным в рамках борновского приближения.

Ссылка при цитировании: Овчинников С.Ю., Ларионов Н.В., Смирновский А.А., Шмидт А.А. Образование квантовых вихрей при ионизации атома импульсом электромагнитного поля // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2017. Т. 10. № 4. С. 111–123. DOI: 10.18721/JPM.10409

: 745 : 0